Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Ann Diagn Pathol ; 63: 152100, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2243832

ABSTRACT

The microbiological etiology of seasonal upper respiratory illnesses in the United States is dominated by viruses, including influenza A, B, respiratory syncytial virus, and SARS-CoV2. Mycoplasma pneumonia, treatable with antibiotics, can also cause upper respiratory symptoms and is typically associated with about 15 % of cases. There is no clinical or radiologic finding diagnostic of Mycoplasma pneumonia infection and PCR-based testing is not routinely used in the clinical setting. Further, the bacteria grows slowly in culture and the diagnostic IgM response will take days after the onset of infection. Thus, a rapid diagnostic test for Mycobacterium pneumonia infection is needed. This study documented two cases of Mycoplasma pneumonia infection of the upper respiratory system using in situ hybridization in a series of over 20 patients who were being tested for SARS-CoV2 infection. The respiratory secretions were placed on a glass slide, fixed in 10 % buffered formalin, and then tested using a Mycoplasma pneumonia probe. The high bacterial number associated with acute infection allowed for straightforward detection by in situ hybridization in a few hours. Antibiotic therapy led to rapid resolution of the symptoms. This highlights the ability of standard in situ hybridization as a rapid diagnostic test for Mycoplasma pneumonia in the clinical setting.


Subject(s)
COVID-19 , Pneumonia, Mycoplasma , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , RNA, Viral , SARS-CoV-2 , In Situ Hybridization , COVID-19 Testing
2.
Microbiol Spectr ; 10(1): e0155021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1685499

ABSTRACT

Mycoplasma pneumoniae is a common pathogen causing respiratory disease in children. We sought to investigate the epidemiology of M. pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the coronavirus disease 2019 (COVID-19) pandemic. Eligible patients were prospectively enrolled from January 2020 to June 2021. Throat swabs were tested for M. pneumoniae RNA. M. pneumoniae IgM was tested by a colloidal gold assay. Macrolide resistance and the effect of the COVID-19 countermeasures on M. pneumoniae prevalence were assessed. Symptom scores, treatments, and outcomes were evaluated. Eight hundred sixty-two eligible children at 15 centers in China were enrolled. M. pneumoniae was detected in 78 (9.0%) patients. Seasonally, M. pneumoniae peaked in the first spring and dropped dramatically to extremely low levels over time until the next summer. Decreases in COVID-19 prevalence were significantly associated with decreases in M. pneumoniae prevalence (r = 0.76, P = 0.001). The macrolide resistance rate was 7.7%. The overall sensitivity and specificity of the colloidal gold assay used in determining M. pneumoniae infection were 32.1% and 77.9%, respectively. No more benefits for improving the severity of symptoms and outcomes were observed in M. pneumoniae-infected patients treated with a macrolide than in those not treated with a macrolide during follow-up. The prevalences of M. pneumoniae and macrolide resistance in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs. IMPORTANCE This is the first and largest prospective, multicenter, active, population-based surveillance study of the epidemiology of Mycoplasma pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the COVID-19 pandemic. Nationwide measures like strict face mask wearing and restrictions on population movement implemented to prevent the spread of COVID-19 might also effectively prevent the spread of M. pneumoniae. The prevalence of M. pneumoniae and the proportion of drug-resistant M. pneumoniae isolates in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for screening and diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs.


Subject(s)
Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/microbiology , Respiratory Tract Infections/microbiology , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Drug Resistance, Bacterial , Female , Humans , Infant , Macrolides/therapeutic use , Male , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/physiology , Outpatients/statistics & numerical data , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Prospective Studies , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Young Adult
3.
Clin Immunol ; 221: 108613, 2020 12.
Article in English | MEDLINE | ID: covidwho-866590
5.
Infection ; 48(6): 871-877, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-680115

ABSTRACT

INTRODUCTION: The novel coronavirus SARS-CoV-2 has spread all over the world causing a global pandemic and representing a great medical challenge. Nowadays, there is limited knowledge on the rate of co-infections with other respiratory pathogens, with viral co-infection being the most representative agents. Co-infection with Mycoplasma pneumoniae has been described both in adults and pediatrics whereas only two cases of Chlamydia pneumoniae have been reported in a large US study so far. METHODS: In the present report, we describe a series of seven patients where co-infection with C. pneumoniae (n = 5) or M. pneumoniae (n = 2) and SARS-CoV-2 was detected in a large teaching hospital in Rome. RESULTS AND CONCLUSION: An extensive review of the updated literature regarding the co-infection between SARS-CoV-2 and these atypical pathogens is also performed.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Chlamydial Pneumonia/diagnosis , Chlamydial Pneumonia/microbiology , Coinfection , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/therapy , Chlamydial Pneumonia/epidemiology , Chlamydial Pneumonia/therapy , Comorbidity , Disease Management , Female , Hospitals, Teaching , Humans , Male , Middle Aged , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/therapy , Retrospective Studies , Rome/epidemiology , Symptom Assessment , Treatment Outcome , Young Adult
6.
J Clin Lab Anal ; 34(1): e23032, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-326814

ABSTRACT

BACKGROUND: Respiratory viruses, such as influenza viruses, initially infect the upper airways but can manifest as severe lower respiratory tract infections in high-risk patients with significant morbidity and mortality. For syndromic diagnosis, several multiplex nucleic acid amplification tests have been developed for clinics, of which SureX 13 Respiratory Pathogen Multiplex Kit (ResP) can simultaneously detect 13 pathogens directly from airway secretion specimens. The organisms identified are influenza virus A, influenza virus A pdmH1N1 (2009), influenza virus A H3N2, influenza virus B, adenovirus, boca virus, rhinovirus, parainfluenza virus, coronavirus, respiratory syncytial virus, human metapneumovirus, Mycoplasma pneumoniae, and Chlamydia. METHODS: This study provides performance evaluation data of this assay by comparing with pathogen-specific PCRs from oropharyngeal swab samples. RESULTS: Ten pathogens were detected in this assay, of which rhinovirus, adenovirus, and influenza virus A pdmH1N1 (2009) were the most common. The overall agreement between the ResP and the comparator tests was 93.8%. The ResP demonstrated 86.5% agreement for positive results and 97.8% agreement for negative results. CONCLUSION: The ResP assay demonstrated a highly concordant performance comparing with pathogen-specific PCRs for detection of respiratory pathogens in oropharyngeal swabs from outpatients and could aid in the diagnosis of respiratory infections in a variety of clinical scenarios.


Subject(s)
Ambulatory Care/methods , Multiplex Polymerase Chain Reaction/methods , Oropharynx/virology , Pneumonia, Mycoplasma , Pneumonia, Viral , Adenoviridae/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Influenza A virus/genetics , Male , Middle Aged , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , RNA, Viral/genetics , Rhinovirus/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL